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Abstract 

In this work the qualitative analysis of statics and dynamics of defects and textures in liquid 
crystals is performed with help of meanders and train tracks. It is argued that similar analysis can 
be applied to 2 + 1 gravity. More rigorous mathematical justifications are presented in the com- 
panion paper (Part II) on quadratic differentials and measured foliations. Meanders were recently 
introduced by Arnold (Siberian J. Math. 29 (1988) 36) and are used originally in the combinatorial 
problem of finding the number of distinct ways given curve can intersect another curve in prescribed 
number of points fixed along this auxiliary curve. Train tracks were introduced by Thurston (Ge- 
ometry and Topology of three-Manifolds, Princeton U. Lecture Notes, 1979) in connection with the 
description of homeomorphisms of two-dimensional surfaces. Train tracks alone are sufficient for 
the description of statics and dynamics of liquid crystals and gravity. Using train tracks the master 
equation is obtained which could be used alternatively to the Wheeler-Dewitt equation for 2 + 1 
gravity. Since solution of this equation is possible but requires large scale numerical work, in this 
paper we resort to the approximation of train tracks by the meanditic labyrinths. This then allows us 
to analyze possible phases (and phase transitions) of gravity and liquid crystals using Peierls-like 
arguments. 0 2000 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

1. I. Motivations and background 

The role of topology in solving physical problems is steadily increasing [ 1,2]. In some 
instances it has become difficult to decide whether physical arguments are helping to solve 
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topological problems or topological arguments are helping to solve physical problems [2]. 
Here we would like to provide yet another example of this sort. 

In 3 + 1 dimensions the laws of Newton’s gravity and Coulombic electrostatics look 
suspiciously similar: both are being described by the Poisson-type equation: 

v2ql = _$p, (1.1) 

where E is the dielectric constant in the case of electrostatics while E-’ = G is the grav- 
itational constant in the case of gravity. The density of charges p(r) can be both positive 
and negative for electrostatics while only positive in the case of gravity. The solution of 
Eq. (1.1) for the potential p(r) is given by 

q(r) = 1 
s J 

d3r 
p(r’) 

(1.2) 
s v (x - x’)2 + (y - YY + (z - z’)2 ’ 

where r =(x, y, z} and V is the volume which encloses the charges. It is expected, that if 
the charges are confined within the domain V, then (p(r) +O when ]r] + 00. Indeed, let 
p(r) = qS(r), then we obtain trivially 

(1.3) 

where q is the magnitude of charge placed at the origin. Solution given by Eq. (1.2) is valid 
only in three-dimensions, however. In two dimensions it should be replaced by 

s 
d2r’p(r’) In 

1 

(x - x’)2 + (y - y’)2 ’ 
(1.4) 

s A 

(with volume V being replaced by area A) so that, instead of (1.3), we obtain now 

q(r) = -: In ]rl. (1.5) 

This time, for ]r] + 00 we obtain q(r) + &cc (depending upon the sign of q). The re- 
sult (1 S) can be obtained directly from Eq. (1.2) for a special case of charges uniformly 
distributed along the infinitely long and infinitely thin rod placed perpendicular to the x-y 
plane, i.e. 

-iln 
V 

(x - x’)2 + (Y - Y’j2 
> 

=p& dzf/~-ln2). (1.6) 

Instead of a rod we can imagine a particle “living” in 2 + 1 dimensions (i.e. particle which 
evolves in time while moving in x-y plane). 

The difference of behaviors of potentials at infinity in two and three dimensions leads to 
the profound difference in the underlying physics. Moreover, this difference forbids smooth 
dimensional continuation of the expression for the potential, given in d-dimensions by 
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(1.7) 

sometimes used in statistical mechanics in connection with the renormalization group meth- 
ods. Let us explain why this continuation is illegitimate. Since the potential p is an auxiliary 
quantity in both gravity and electrostatics, we shall use instead the forces F obtained in a 
usual way through 

F=+. (1.8) 

The forces create the vector fields, and in the case of two-dimensions, we have to consider 
the vector fields on surfaces. In particular, let us consider the plane R*, the sphere S* = 
R* U (00) and the disc D* of some radius R. Evidently, physically all three possibilities 
are almost indistinguishable: the sphere S* can be obtained from the plane by one point 
compactification, the plane can be obtained from the disc D* by taking the limit R + co. 
Topologically, however, the above tree surfaces are completely different: the sphere S* has 
the Euler characteristic x (S*) = 2, the disc x (D*) = 1 and the plane R* cannot be given 
any value of x [3]. For the time being we shall work with S* and D*. The choice between 
these two surfaces is determined by the boundary conditions. 

On the surface (manifold 44) vector fields obey the Poincare-Hopf (P-H) index theorem 

[41: 

X(W = c Z(Xi), (1.9) 

where the index I (xi) of isolated singularity is defined as follows. Consider the vector field 
v(x, y) = {v, (x, y),v, (x, y)} around just one of the singularities and let U E M be some 
(say, circular) domain around this singularity. In this domain we can construct a unit vector 
n(x, y) via 

v(x, Y> 
n(xT y, = Iv(x, y)] . 

(1.10) 

This vector provides the Gauss map from M to S’. The degree of this mapping is I&). 
More explicitly [5,6], 

4 vx dv, - vy dv.x 

c, 
v; +v; . (1.11) 

In cases of both Newtonian gravity and Coulombic electrostatics the index of an isolated 
singularity is equal to one as can be easily seen by introducing the complex variable t = 
x + y = reiq and by combining Eqs. (1.5), (1.8) and (1.11). This means that the minimal 

number of charges which one can put on the sphere is 2 while that on the disc is 1. The P-H 
theorem, Eq. (1.9), does not automatically leads to the requirement of electroneutrality: 
one can place two charges of the same sign on S* without violating this theorem. The 
complications arise, however, if one would like to place more than two charges on the 
sphere. In this case if initially we would have, say, two pluses, we would be unable to place 
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the additional charges while if we would have initially “+” and “-” charges, then such 
placement becomes possible ifwe add chargespairwise while keeping the electroneutrality. 
This becomes possible only because the presence of two identical charges creates a saddle 
(e.g. see Fig. l(a)) which has an index -1 [4]. Hence, in the case of electrostatics the 
only possible singularities are the sources/sinks (Fig. l(d))with index 1 and the induced 
saddles (Fig. l(a)) with index -1. The existence of multiple charges in electrostatics and 
the electroneutrality are directly related to the topology of the underlying manifold and to 
the emergence of the induced saddles. 

Consider now the case of Newton’s gravity. Let us place the same two charges (masses) 
on the sphere and let, say, one of the charges be “+” so that another is “-“, and since this is 
gravity, the masses are naturally attracting each other. Let us try now to add one additional 
mass (charge). We immediately run into problem: since all masses attract each other, there 
cannot be saddles. If this is the case, we are unable to place an additional mass on S2. Hence, 
in such spherical universe we would have just two masses! The situation becomes even more 
dramatic if, instead of S*, we would consider D2. In this case we would not be able to put 
more than one mass while for the case of an annulus (i.e. the disc with a hole) we would not 
be able to put on it even a single mass (!) since the Euler characteristic of an annulus is 0, [3]. 
At the same time, we can easily put e.g. three charges of the same sign on the annulus in the 
case of electrostatics. These very simple arguments lead us to the conclusion that there are 
some profound differences between the Coulombic electrostatics and the Newtonian gravity 
and that the above differences alone are sufficient in order to arrive at the correct Einstein 
formulation of gravity. This is going to be demonstrated mainly in the accompanying paper 
[7] while here we provide only the qualitative arguments. For this purpose we also need 
to discuss systems other than electrostatic and gravitational (in Newton’s sense). These are 
naturally occurring as defects and textures in liquid crystals [8,9]. 

To study these defects it is helpful to recall some basic facts from the qualitative theory 
of dynamical systems on surfaces [5,6]. These are also described in terms of flows of the 
vector fields. In two dimensions we are usually dealing with the system of two equations: 

dx 
- =vx(x, Y>, 
dt 
dy 

- = vy(x, Y). 
dt 

(1.12) 

Irrespective to the explicit form of the r.h.s. of Eq. (1.12), it is known [5,6] that the sin- 
gularities of the flow could only be of the type depicted on Fig. 1. ’ These can be easily 
obtained by linearization of the Eq. (1.12) around the singularities of the vector field. The 
whole phase portrait can then be built out of these local pictures by gluing together the 
local pieces in some consistent way. Moreover, the topological considerations allow us to 
restore the phase portrait with help of only partial knowledge of the existing flow around 
singularities. This principle is very helpful for our case too but the situation is complicated 
by the fact that, in the case of liquid crystals as well as in 2 + 1 gravity, instead of vector 

’ Clearly, the flow directions on some of the figures could be reversed. 
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c) 

Fig. 1. ‘Qpical singularities of the vector fields in the plane. 

fields on surfaces one has to deal with line fields. This was demonstrated for liquid crystals 
in [ 10,l l] and will be demonstrated in [7] for the case of gravity. The case of line fields 
has been also studied in the theory of differential equations on surfaces [5,6]. In this case, 
instead of the system of Eqs. (1.12), we have to consider 

dx dy p= 
v,(x, Y) v,(x, Y)’ 

(1.13) 

Typical singularities of the line fields are depicted in Fig. 2 with the values of the cor- 
responding indices. 2 For example, in the case of the line fields with indices &l/2, the 
differential equation which describes these fields is given (in polar r, q coordinates) by [5] 

dr 
-=rtan nf 
dv ( > 2 . 

(1.14) 

For n = 1 we obtain the line field with index -l/2. This field is described analytically by 

a 
r= 

2f3 

’ Eq. (1.11) cannot be used for the calculation of indices of line fields. The analogous formula is provided 
in [7], e.g. see Eq. (4.20). 
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1 l/2 -l/2 -1 

Fig. 2. Typical singularities of the line field and the associated indices 

with a being an arbitrary positive constant and ye lying in the following sectors: 
(a) -n/3 < (p < rc/3, 

(b) n/3 < co < n, 
(c) rc < q < 5n/3. 

Similar analysis can be performed for II = - 1 which produces the index + l/2 as depicted 
in Fig. 2. Although for the line fields it is impossible to introduce consistently the global 
orientation [4-61, nevertheless, it is possible to introduce the indices for these fields [4] by 
analogy with the vector fields. The absence of orientation for the line fields leads to the 
absence of “forces” between the singularities (defects). This property is not unusual for the 
theories of 2 + 1 gravity where it is impossible to introduce the interaction forces between 
massive particles [12]. In Sections 4, and 5 of Part II [7] we shall demonstrate that both 
2 + 1 gravity and the textures in liquid crystals are described by the line fields. In this part 
(which we call Part I) we shall rely mostly on the intuitive arguments. 

Although it is impossible to introduce the interaction forces between defects (or masses) 
it is possible, nevertheless, to talk about the total energy in both 2 + 1 gravity [ 131 and in 
the theory of liquid crystals (e.g. see Part II and Section 5 below). Moreover, because of this 
fact, it makes also sense to talk about the different phases (orders) at least for the case of 
defects in liquid crystals [ 141. Although the connections between the defects and textures 
in liquid crystals and 2 + 1 gravity were discussed before [ 151, here we provide completely 
different treatment of these connections. 

1.2. Organization of the rest of this paper 

In Section 2 we consider the role of topology in phase transitions in two-dimensions. 
We argue, that in cases of the vector (Coulomb-like) and line fields on surfaces topological 
considerations alone are sufficient for predicting the Kosterlitz-Thouless type of phase 
transition [ 141 from gas to dipole phase while in case of the line fields in liquid crystals, the 
existence of hexatic phase [ 161 can be easily established. Clearly, topological considerations 
alone provide only sufficient conditions for existence of ordered phases. The necessary 
conditions require us to study the nature of the disordered phase in some detail. This is 
accomplished in Sections 3 and 4. In Section 3 we provide an explicit construction of 
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the disordered phase using some ideas from the qualitative theory of ordinary differential 
equations. Superposition of these ideas with topological arguments produces notions of 
“labyrinths” and “meanders”. Since neither labyrinths nor meanders are widely known in 
mathematical physics literature, to avoid repetitions, we refer the reader directly to Section 3 
for precise definitions. Here, we only would like to mention that the description of labyrinths 
is closely related to the description of the maps of the circle [ 17,181 which should be more 
familiar to physically trained reader. The notion of a meander has its origin in the work 
by Arnold [ 191 who actually invented this word. In the simplest case one can think about 
the meander as a representative of the class of curves which intersect another curve in the 
prescribed number of points. Although from the above vague definition it may not be clear 
that the meanders and the labyrinths may have many things in common, nevertheless, this 
is the case as we demonstrate in Section 3. 

In Section 4 we discuss yet another way of looking at the line fields through the notion 
of “train tracks”. This way of looking at line fields was proposed originally by Thurston 
[20] in connection with his studies of three-manifolds. We argue in this section that the 
train tracks can be used for description of dynamics of textures in liquid crystals and 2 + 1 
gravity. The master equation which describes the evolution of the train tracks could be used 
as an alternative to more familiar Wheeler-Dewitt equation (in the case of gravity). Since 
the actual calculations which involve this equation resemble that of the Heisenberg-type 
quantum mechanics, they require a large scale numerical work which we try to avoid (at this 
stage of research) by restricting ourself to the approximation of train tracks by meandritic 
labyrinths. The legitimacy of this approximation is discussed in Appendix A. 

Use of the meandritic labyrinth approximation allows us to obtain additional quantitative 
information about the stability of the disordered phase and the parameters of the order- 
disorder phase transition in the system of meandritic labyrinths. This is accomplished in 
Section 5. 

All results of Part I are provided without serious proofs (with few exceptions). Part II [7] 
serves to some extent to correct this deficiency by providing the mathematical justifications 
to the emerging picture. Sufficient details (and references) are provided in both parts of 
this work to make this presentation self-contained and accessible not only to the experts on 
gravity but to the interested condensed matter researchers as well. 

2. Role of topology in phase transitions in two-dimensions 

We had already demonstrated (in Section 1.1) that the property of electroneutrality is 
directly connected with the topology of the underlying manifold, at least in the case of 
Coulombic-like systems. Here, we would like to demonstrate that, in addition, the topolog- 
ical considerations alone determine the nature of phase transitions in such systems. For the 
line fields the sequence of arguments, unfortunately, is considerably more complicated and 
will be discussed in the rest of this paper and in Part II. 

In the case of Coulombic-like system, let us assume that under some favorable conditions 
the incoming “+” and “-” have “decided” to stay together thus forming a dipole. The vector 
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a) b) 

Fig. 3. The field lines around the dipole (a) and the source (b) (in the case of a sink the directions of lines are 
changed into the opposite). 

field in this case is depicted in Fig. 3 along with a separate source (+) (or sink (-)). The index 
of the dipole is 2 so that P-H theorem is not violated if on the sphere we would have only two 
charges which have “decided” to form a dipole. Let us place a source/sink in the vicinity of 
such dipole. By direct inspection we can notice that topologically such source/sink cannot 
fit the vector field flow pattern coming from the dipole unless it is combined with yet 
another charge thus forming yet another dipole. Formation of the second dipole will cause 
the formation of two-additional saddles so that P-H theorem is not violated. Evidently, this 
procedure can be extended to other charges. From here several conclusions could be drawn. 
First, the transition to the dipole phase should be sharp. Second, since in the above arguments 
the density of charges p was not present, it means that such transition cannot be considered 
in traditional tbermodynamical sense, that is for some critical temperature T, and critical 
pressure PC there is no true critical density pc. These conclusions are in complete accord 
with the results of Hague and Hemmer [21] who had provided more traditional statistical 
mechanics treatment of this type of transition. Obtained results are also in complete accord 
with the results of more sophisticated treatment performed by Kosterlitz and Thouless [22]. 

The above simple picture breaks down immediately if we are willing to analyze possible 
transitions in the case of defects which produce the line fields, e.g. liquid crystals or 2 + 1 
gravity. Unlike the Coulombic case where the vector field picture is rather simple: or we 
have an independent charges or we have dipoles, in the line fields case there are many more 
possibilities. Since the local and global analysis of the line fields had been (and still is!) 
the subject of intensive research in mathematics, it is impossible to squeeze the enormous 
amount of results accumulated to date in this work. For a good summary, please, consult 
[23-251. Without trying to present a summary even of these results, we shall, nevertheless, 
select those which, we feel, are of immediate physical relevance. 

Let us begin with the observation that in case of the Coulombic-like fields the regrouping 
of charges had not produced a violation of the P-H theorem. Evidently, we have to require 
the same in the case of line fields. The moves which do not violate P-H theorem are depicted 
in Fig. 4 and are known in the literature as Whitehead moves [23]. In addition, it is possible 
to imagine the situations depicted in Fig. 5. Clearly, by looking at Fig. 4 we observe the case 
of creation of “new” defects with index f 1 from the “old” ones with index *l/2, while 
looking at Fig. 5 we effectively observe the case of destruction of defects. The indices of 
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a) 

0 0 
??

Fig. 4. The allowed Whitehead moves for the line fields (“creation”). 

(a) and (b) are +1/2 while the index of (c) is zero. In principle, other situations are also 
possible but, for reasons which will be explained in Section 4 and Part II, we shall not be 
concerned here with more complicated situations. 

Given these local moves, what one can say about the “phase transitions” (as compared 
to the Coulombic-like vector fields) in the system of such defects? For example, can we 
expect, by analogy with Coulombic case, that the transition(s) is (are) going to be density 
independent? For this purpose let us consider the case of a disc x (D2) = 1. To be in accord 
with the P-H theorem, Eq. (1.9), we need to have at least four defects with half integer indices 
(since only half integer types of defects are topologically stable [26]): one with index -l/2 
and 3 with the index +1/2. The resulting “stable phase” is depicted in Fig. 6. This does 
not look like a dipole, and because of the P-H theorem, we cannot just form another dipole 
and so on as in the Coulombic case and we cannot use the electroneutrality condition as 
well. So, what else could we possibly imagine? For example, should we have exactly 14 
defects, we could have an orderly structure which resembles that depicted in Fig. 7. We use 
the word “periodic” to describe this phase following Thurston’s classification of surface 
homeomorphisms [25] as will be explained in more details in Section 4. 

Is it possible to obtain something else? The answer depends upon how many defects are at 
our disposal. Consider the case of thermodynamic limit, i.e. the case when the size R of our 
disc D2 is allowed to approach infinity along with the number of defects so that their ratio 
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0 0 
0 
. 

a) 

Fig. 5. The additional configurations leading to “destruction” of defects. 

Fig. 6. Possible “periodic” phase in the case of minimal number of line field defects in the disc 
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Fig. 7. Possible “periodic” phase made up of 14 defects in the disc. 

Fig. 8. Possible hexatic-type phase obtained in the thermodynamic limit. 

remains fixed. In this situation we can imagine the structure depicted in Fig. 8. How can we 
check that this structure is actually in agreement with the P-H theorem? This can be accom- 
plished following the original arguments by Hopf [4] (see also [27]). Let S be closed ori- 
entable surface of genus g. Let au be the number of vertices, u 1 be the number of edges and a2 
be the number of two-cells (e.g. hexagons). Then, according to the Euler theorem, we obtain, 

a0 - at + a2 = 2 - 2g. (2.1) 

Looking at Fig. 8 and following the same line of arguments as were made by Hopf, let us 
replace the original hexagonal lattice with the elementary cell depicted in Fig. 9. 

Fig. 9. The elementary triangle used in P-H theorem calculations related to the hexatic-type phase depicted 
in Fig. 8. 
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a> b) 

Fig. 10. (a) Another possible hexatic phase which is permitted by the Euler theorem; (b) The elementary 
triangle used in Hopf-like calculations of the Euler characteristic. 

The face of each cell has an index +l, the edge has an index 2(-l/2) = - 1 and each 
vertex has an index 1. Hence, such construction holds for an arbitrary g, and therefore, 
the hexagonal phase is consistent with the Euler theorem, Eq. (1.2), and, accordingly, with 
the P-H theorem, Eq. (1.9). As in the case of the Kosterlitz and Thouless transition earlier 
described, the existence of the above hexatic phase is already known in physics literature, 
e.g. see [28], where this phase is obtained with the help of completely different set of 
arguments. In Section 4 of Part II we shall provide yet another arguments in support of the 
existence of this phase. 

The questions arise: 
(a) is such obtained hexatic phase unique? 
(b) can such phase occur for an arbitrary concentration of defects (as in the Coulombic 

phase case)? 
The answer to the first question is negative as can be easily seen from the situation 

depicted in Fig. 10(a) and the corresponding elementary triangle given in Fig. 10(b). Taking 
into account that, in view of Fig. 5(c), the effective total index of singularities at the edge 
(~0~22) is zero, the present case coincides with that described by Hopf [4]. That is, we have 
the index of two-cell the same as a2 vertex (i.e. +l), the index of the edge the same as the 
index at at (i.e. -1) and the index of the vertex is the same as the index at au (i.e. +l). 
Hence, we are again in accord with the Euler theorem, Eq. (2.1). 

Since we have at least two types of hexagonal structures we may think about some sort 
of phase transition between them. In addition, we have not actually proved that only two 
hexagonal structures are possible. A similar but much simpler problem of packing of hard 
hexagons on the triangular lattice was considered by Baxter [29] (and, more recently, by 
Monasson and Pouliquen [30]) with partial success (since the solution of the hard hexagon 
model is related to the solution of 2d Ising model in the magnetic field which is not known 
in general). 

Because of some similarities between the hard hexagons and the present liquid crystal 
problem, it is useful to furnish some details since they will eventually be used to provide an 
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Fig. 11. Two-dimensional plane can be covered by hexagons. At the same time, one can cover the plane 
by the triangular lattice so that for the complete coverage three hexagons should fit together around each 
vertex. 

answer to the second question (about the concentration dependence) posed above. To this 
purpose, in the case of hard hexagons, let us introduce the surface density p via 

p=$ (2.2) 

(a similar problem which involves the one component plasma was considered recently in 
[31,32]), where n is the total number of hexagons and N is the total number of lattice sites 
(triangles). More useful quantity, however, is the packing fraction q = 3~. To understand 
the emerging factor of 3, the inspection of Fig. 11 is helpful (see also [33]). By construction, 
the complete packing corresponds to q = 1. Looking at Fig. 10, we easily can conclude 
that, in the case of the packing depicted in Fig. 10(a), the packing fraction is l/2. Even 
in the case of hard hexagons the packing problem is not completely under control. That 
is the description of transition from one mode of partial packing to another (e.g. loose 
r] -C 1 versus dense n = 1) is still lacking [29,30]. At the same time, in the present case 
we are not even dealing with hard hexagons. Our “hexagons” can be easily destroyed as 
it will be discussed in Section 6 of Part II. To analyze this more complicated situation, 
quantities other than p may be helpful. Following Ref. [31], let us introduce some cut- 
off radius ru (the size of the disclination core [14,26]) as well as the surface density b 
via 

(2.3) 

where A is the surface area and ri is the total number of surface defects (charges). Next, we 
can introduce the Wigner-Seitz radius rw_-s via 

1 
TrF-;_-s = ,. 

P 

Finally, the filling fraction v can now be introduced via 

r0 ( > 
2 

v= - 
rw--s 

= n&? 

(2.4) 

(2.5) 

By construction, 05 u 5 1 so that u can be used (instead of 17) to characterize the possible 
phase transitions. These results will be used in Section 5. 
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4 b) 

Fig. 12. Simplest “building blocks” for measured foliations. 

3. Labyrinths and meanders 

The disordered phase of line field defects is no less interesting than the ordered phase. 
Let us consider the simplest possible case of just four defects in D2. The “ordered” phase is 
depicted in Fig. 6. To get a feeling of the disordered phase, following [34], let us consider 
the “foliation box” & depicted in Fig. 12(a). The lines, known in mathematical literature 
as fokations (measured foliations to be exact [10,23-251) are free of singularities in the 
box a) and contain two singularities in the box (b) (with account of the results depicted in 
Fig. 5(c))). Following [34], we call these singularities ‘7”’ and “thorn”, respectively. Since 
the total index in the box b) is zero, we can, evidently, place in the line field as many as 
we wish such Y-thorn doubles without violating of the P-H theorem, Eq. (1.9). This gives 
us a certain freedom of moving such objects around. In particular, if for the moment we 
would like to forget about the “tail ” of Y-singularity, then, we can concentrate our attention 
at the foliations in semicircle(s). We shall restore the tail afterwards (to account for the 
P-H theorem). In the meantime, let us consider collection of three foliated semicircles as 
depicted in Fig. 13. 

-(x-a) 

Fig. 13. Simplest nontrivial global foliation pattern made of simple building blocks. 
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Fig. 14. The structure of disordered phase (labyrinth) in the case of minimal number of line defects (to be 
compared with the ordered phase depicted in Fig. 6). 

That is q translations in the lifting space are equivalent to “pure” rotation of the circle by 
the angle t9 = 2rcp/q. Accordingly, if Eq. (3.6) does not have fixed point(s) for any q, then 
t(F) = o where cx is irrational. With respect to the situation depicted in Fig. 13 we have to 
conclude, that the “motion” along the line l-2-3, etc. will never stop or cross another line, 
i.e. we have obtained the foliation which is actually a labyrinth. Let us take now into account 
the P-H theorem and make the situation more realistic. To this purpose we attach the “tail” 
to S’ semicircle and gently open the foliation leaf starting at a! in Fig. 13. The result of 
such opening procedure is depicted in Fig. 14 which represents the simplest example of a 
labyrinth: all incoming leaves are being trapped inside the labyrinth forever. 

The picture just described can be wasty generalized with help of the following auxiliary 
observation. Consider some nonintersecting line C (closed or not) and place on the top 
of it a finite collection of foliated half circles (semicircles) provided that none of these 
half circles are touching each other (unless the otherwise is specified). Let us place the 
remaining half discs on the bottom of _C in the way depicted in Fig. 1.5. We have obtained in 
this way an example of a “meander” labyrinth Let us explain now what actually the word 
“meander” means. According to [35], a meander of order n is a closed nonselfintersecting 
curve which intersects another straight line in exactly 2n preassigned points (more exactly, 
an equivalence class of such closed curves which leave the straight line C fixed). Evidently, 
the line L need not be straight in general. A few examples of the meanders of lower order 
and the corresponding meandritic labyrinths are depicted in Fig. 16. Although the four last 
meandritic labyrinths are degenerate (two half discs are touching each other), this may be 
still permissible (if other discs are not touching each other), e.g. see Example 2 of Ref. [34]. 
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0 I 

Fig. 15. The simplest example of the meander labyrinth. 

This is so because we still have to attach “tails” to some of the discs (e.g. see Fig. 14) to 
make them Y-type in order to be in accord with P-H theorem. Trough the tails the external 
lines penetrate into the labyrinth and become trapped forever. Moreover, because of the 
tails, the symmetry between different labyrinths depicted in Fig. 16 becomes broken so 
they all have to be considered, just like the underlying meanders. 

The meandritic number Mn (that is the total number of meanders of order n) provides the 
degeneracy factor for the partition function of defects to be discussed in Section 5. Its value 
is essential in the description of the diclination binding-unbinding “melting” transition 
[ 141 in the non-Coulombic two-dimensional “plasma” of such defects. Actually, the above 
description is still incomplete since, as it is well known from statistical mechanics of two- 
dimensional plasma [21], the clustering effects should also be taken into account. This, in 
particular, means that, instead of just one connected meander, we may as well consider a 
collection of nonintersecting meanders. Specifically, for the multicomponent meander of 
order n we may choose k nonintersecting lines (1 I k p n) so that the total number of 
crossings on all lines is 2n. Accordingly, one can introduce the meandritic number MAk’ to 
account for this fact [36,37]. This number will be estimated and used in Section 5. In the 
meantime, it is useful to introduce, yet another, set of meanders, the projective meanders 
[ 19,381. These are defined as follows. Consider 2n points on the circle S’ . Divide the points 
into rz pairs so that the chords connecting points in each pair will not intersect. Identify the 
diametrically opposite points on the circle, thus turning the disc into the projective plane (or 
sphere). Such formed set of curves in the disc is called the projective meander of order n. 
Evidently, the number of possible projective meanders of order n is equal to the nth Catalan 
number 

c* = (nyyy, ,’ 

A. 
(3.9) 

which obviously reflects the combinatorics of the problem. We shall need the notion of the 
projective meanders in order to demonstrate that the above labyrinth construction is not 
artificial but, actually, is intrinsic for the whole description of the measured foliations on 
surfaces. In addition, there is yet another way to look at the whole problem for the case of 
line fields. Because of its potential usefulness for the problems which involve 2 + 1 gravity, 
we discuss this other approach in the next section. 
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4. Tkain tracks and pseudo-Anosov homeomorphisms 

The logical development of dynamical systems on surfaces goes from the detailed treat- 
ment of the circle maps through the torus maps and then, to consideration of flows (foliations) 
on the Riemann surfaces of genus higher than one. Nevertheless, already the circle maps 

meander labyrinth 

n=3 Ga - 

--“t9 
---e@ 
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Fig. 16. The simplest meanders of order n = l-3 and the associated with them meandritic labyrinths. 

exhibit all qualitative features of more complicated situations. Moreover, as it was shown 
by Thurston [39], all surface homeomorphisms can be actually related to the circle maps 
through the construction which he calls the “earthquake”. 3 

Let us briefly explain why this is so. (In the Appendix of Part II these arguments will 
be extended to three-dimensional hyperbolic manifolds.) As in the case of the circle maps 
discussed in the previous section, the surface homeomorphism f : R + R’ (where both R 

3 More recent discussion of earthquakes could be found in paper by F. Bonahon [AMS Transactions 330 
(1992) 69-951. 
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and R’ are some Riemann surfaces) can be lifted to the universal covering space which is 
either the Poincare upper halfplane H2 defined by 

H2={z=.x+iyEC]y>0} (4.1) 

or the open unit disc D2 

D2={W=U+iuEC]u2+u2 < 1) (4.2) 

which is related to H2 via mapping 

z-i 
w=---- 

z+i’ 
z E H2. (4.3) 

Since every Riemann surface R of genus g greater than one can be obtained as the quotient 
R = H2/f where r is some Fuchsian group, i.e. the group of linear fractional transforma- 
tions of the type 

v(z) = St ad - bc = I 

with a, b, c, d being real numbers, we can always lift the flow on surface R to the flow on 
D2 where by means of earthquakes the description of flows becomes connected with the 
description of circle maps. Let now C be some closed curve on R which is homotopically 
nontrivial (that is it cannot be shrunk to the point). It can be proven [40] that, 

Theorem 4.1. C is freely homotopic to a unique closed geodesic 1. 

Also, it is known [41] that, 

Theorem 4.2. For a closed Riemann surface of genus g there are 3g - 3 
independent closed geodesics (please, see Fig. 5 of Part II). 

Finally, following Thurston [25] and Casson and Bleiler [42], we introduce 

Definition 4.3. Disjoint union of geodesics is called lamination (C); the geodesics con- 
tained in C are called leaves of C. 

It can be very easily shown [ 17,181 that, when lifted to H, the geodesics look like that 
depicted in Fig. 17. That is they are either halfcircles with center on the real axis or the 

Fig. 17. Geodesics on the Poincare upper H-plane. 
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Fig. 18. Geodesics on the unit open disc D2. 

lines perpendicular to the real axis. When transformed from H to D2, the halfcircles go 
to halfcircles and the vertical lines to the diameters of D2 as depicted in Fig. 18. If we 
consider the case of lamination C then, by construction, the geodesics are nonintersecting 
on R, and whence on D2 [43]. This means that in D2 they look like the projective meanders 
(before identification of points on S’ is made) described in the previous section. A simple 
minded permutation of these geodesics in D2 produces the Catalan number Cn, Eq. (3.9). 
In general, the situation is considerably more complicated [23,25,42]. 

If for a given Riemann surface of genus g with II punctures we have the inequality 
2g + n - 2 > 0, then the mapping class group M(R) is defined through its action on L. If 
f E M(R) and C = {cl, . . . , c,} E L, then the mapping f is reducible if 

f(C) = c. (4.5) 

Alternatively, it is being said that f is reduced by C. 
If, in accord with the theory of braids [44], we assume that Eq. (4.5) holds for any 

permutation of the set C (and this is indeed the case [42]), then the Catalan number, Eq. (3.9), 
naturally emerges. The reducible case is not the only possibility however. If, say, f is reduced 
by C, then let S = {st, . . . , s,} be the set of components of the complement of R - C, 
e.g. see Fig. 5 of Part II. Since f permutes si, let ni be the smallest power of f such 
that 

f”i (Si) = s;. (4.6) 

For any Eli > 0 such mapping is called periodic. It could as well be that Eq. (4.6) does not 
have fixed point(s) for any finite ni. In this case, if Eq. (4.5) still holds, then the mapping is 
still reducible, but if neither (4.5) or (4.6) hold, then the mapping is called pseudo-Anosov. 
This term will be explained below. Before doing so, we notice that Eq. (4.5) can be lifted 
to D2 so that with respect to the ends of geodesics lying on S’ we have some sort of 
a mapping of a circle analogous to that discussed in the previous section. According to 
Thurston [39], “every homeomotphism of the circle S’ extends to the homeomorphism of 
the disc D2" . (In the Appendix to Part II we shall discuss the extension of this result to the 
case of three-manifolds). Evidently, the reverse should be true as well. In which case, the 
lift of Eq. (4.6) to D2 has its analogue in Eq. (3.6) and the case when Eq. (3.6) does not have 
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solution for any q corresponds to the pseudo-Anosov type of mapping. Let us now explain 
the meaning of the word “pseudo-Anosov”. According to [ 17,181, the following theorem 
can be proven. 

Theorem 4.4. The geodesicjow on H2/r is the Anosovjlow, 

The best way to explain this is again pictorial. We lift the geodesics from R to H in order 
to obtain the picture given in Fig. 19. Accordingly, we can also look at the same picture by 
using the disc D2 model. In this case we have the situation depicted in Fig. 20. The circles 
tangent to x-axis at some point x0 (in H-plane) are called horocycles. It can be shown, that 
the set of horocycles (touching x-axis at x0) and the set of geodesics (emanating from x0) 
are mutually orthogonal (thus forming stable and unstable manifolds, see below). For the 
geodesics directed as in Fig. 19 it is intuitively clear that the flow is expanding (unstable). 
If we would change the direction of geodesics (i.e. if we change the time evolution from t 
to -t), then the flow will be contracting. It can be shown [ 181 that the rate of expansion is 
e while the rate of contraction is e-’ (e = exp). Now, we are ready for a general definition 
of the Anosov flow. 

Y 

Fig. 19. Anosov flow on H-plane. 

Fig. 20. Anosov flow on the disc 0’. 
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Definition 4.5. If A : M -+ M is some diffeomorphism of compact manifold M such that 
the tangent bundle Z” M for any point x E M is decomposable into direct sum $ of the type 

TxM = Xx @ Yx, (4.7) 

so that in some (Riemannian) metric, and for some number k > 1 the following inequalities 
hold 

IIA4II 2 ~llfll Vt E X.x and IIA*rllI 5 A-‘llrlll Vrl E Y,, (4.8) 

where A, is the differential of the operator A (acting in tangent space) and 11 . . . 11 is the 
usual square of the length in some (Riemannian) metric space, then the flow TX M is Anosov. 

Remark 4.6. Ij in addition, the flow contains some singularities, then it is called pseudo- 
Anosov [4.5]. The sets X, and Y, are called (unjstable foliations respectively. 

Remark 4.7. It can be shown, that the geodesicflow on H is ergodic [18]. That is there is 
some measure p(x) such that 

s 
dp(x)qo(x) = lim 1 

s 

T 

T-COT c 
dMA’x(t)), (4.9) 

where A’ is some evolution operator (continuous analog of A, in (4.8)). 

In the case of pseudo-Anosov flows it is customary to introduce the transverse (vertical) 
measure which can be intuitively understood using the following picture, e.g. see Fig. 2 1. 
That is, if locally the foliation looks like the set of horizontal lines (away from singularities), 
Fig. 21(a)), then, when we try to restore the global picture, the local charts should be glued 

I I 4 4 
A A 

t b t 

I I 

a) b) 

Fig. 21. For the measured foliation the vertical distance between the leaves on two adjacent patches (local 
charts) must be the same. 
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in such a way that the vertical distance A between the leaves on one chart is expected to 
be in agreement with the vertical distance A on another. If this is the case, the foliation is 
called measured. We shall be dealing only with measured foliations [ 10,251 in the rest of 
this work in accord with Poenaru [lo], Langevin [l l] and Ref. [25]. 

The above nice picture leaves us with no clues about the mechanisms by which the flows 
can be changed from the reducible to periodic or from the reducible to pseudo-Anosov, etc. 
As in the case of circle homeomorphisms (Section 3), there must be somephysical reasons of 
changing from one regime to another. The best way to get some physical feeling of the pro- 
cesses which cause “phase transitions” (i.e. changes in the flow regime) is through the notion 
of “train tracks” introduced by Thurston [20] and subsequently developed by many other 
mathematicians, e.g. see Refs. [46,47]. The idea behind the train track is simple but very 
powerful. To appreciate it, it is helpful to recognize that there is some similarity between the 
way knots (or links) are described and the train tracks. In the case of knots (links) one usually 
studies a “shadow” of a knot obtained by projecting it onto some arbitrary plane [48]. The 
projection is a four-valent planar graph K without the dangling (“dead”) ends. Evidently, 
different knots may have the same projection for a plane which orientation is fixed. To dis- 
tinguish between different knots (links) one has to resolve each 4-valent vertex (i.e. to decide 
which strand is “over” and which is “under”), and in addition, to use the set of isotopy moves 
(the Reidemeister moves) to bring one projection in accord with the other. It is believed, that, 
at least in principle, one can decide if two knots are equivalent by performing some finite (but 
could be very large!) sequence of the Reidemeister moves. In all these operations the physi- 
cal nature of a knot is not playing any role. In the case of train tracks one is also dealing with a 
graph T without dead ends and also there are the isotopy moves (analogous to the Reidemeis- 
ter moves), but in addition, and this is the most important, there are moves which do not re- 
spect isotopy. These moves change the topology of the graph T and could be associated with 
some physical processes as we shall explain below and in Part II (Section 6 and Appendix A). 
The graph T has two basic building blocks which can be easily recognized, e.g. see Fig. 22. 
One can see from this figure that, instead of having all leaves and precise angles, one can actu- 
ally “survive” only with topologically equivalent objects which are smooth at joints. With the 
basic building blocks just defined, we can construct our first train track. In particular, instead 
of having rather complicated foliation pattern depicted in Figs. 13 and 14, we can draw the 
following graph depicted in Fig. 23. Of course, the r.h.s. of Fig. 23 provides still only a coarse 
grained foliation pattern thus creating an illusion that the line is closed (and this is indeed the 
case for the “rational” labyrinth). The numbers on the graph are quite arbitrary but are subject 
to one restriction: at every switch the sum of “entering” numbers is equal to the sum of the 
“exiting” numbers. The numbers are associated with the invariant transverse measures which 
were formally introduced earlier. Since one can construct from the collection of 3-valent ver- 
tices the vertex of more complicated nature, e.g. 4-vertex, 5-vertex, etc., it makes sense to talk 
about given vertex uk (k = 1 - M) in general. If {a:} is the set of input branches and (a?‘} 
is the set of output branches, then for a given vertex Vk the switch condition can be written as 

C l-h (47 = C /_Lvk (a?‘). 

i i 

(4.10) 
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switch 

a 0 0 
. 

Fig. 22. Basic building blocks of the train track. . . . w 
Fig. 23. A simple train track and the foliation pattern which is associated with it. 

The switch condition is analogous to the Kirkhoff rule for currents known in physics [49]. 
It could be proven [20,45], that the assignment of weights (transverse measures) p(ai) for 
each branch of the train track which is subject to the switch conditions, Eq. (4.10), at each 
vertex is equivalent to the reconstruction of the entire measured foliation (up to isotopies 
and Whitehead moves, Fig. 4) [23]. The new feature which makes the train tracks more 
complicated than knots (links) lies in additional moves which, unlike the isotopy, do change 
the topological type of the track. These moves have the major physical significance as it 
will be demonstrated shortly. Before doing so, we would like to provide a list of topology 
changing moves. They are depicted in Fig. 24. The shift operation can be performed without 
reference to weights but, of course, the switch condition, Eq. (4.10), should be obeyed 
before and after the shift. The split (or collapse) is dependent, however, upon the particular 
distribution of weights. The shift does not destroy (or create) the existing singularities while 
the split (collapse) may destroy (create) the singularities thus apparently violating the P-H 
theorem. This deficiency can be easily corrected if some physics is taken into consideration. 
To do so, several steps are still required. First, following Refs. [46,47], let us consider the 
process of collapse as the matrix operation. That is, we form the column vector made of 
weights a’, b’, . . . , e’ and look for the transition matrix S-l such that x = S-‘x’, or more 
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shift 
II 

a’ 

C aF 
b 

Fig. 24. Major topology nonpreserving moves for the train tracks. 

explicitly, when c’ < a’, we obtain, 

(4.11) 

This result can be easily understood based on Eq. (4.10) and Fig. 24. Indeed, according to 
Eq. (4.10) we have a’ + e’ = c’ (c’ > a’) and also e’ + d’ = b’ for the split diagram while 
a + b = e and c + d = e for the collapsed diagram. At the same time, using Eq. (4.1 l), 
we obtain: a = a’; b = b’; c = c’; d = d’ but e = a’ + d’ + e’. The last result 
becomes an identity if the Kirkhoff sum rules, just obtained, are utilized. Evidently, the 
corresponding matrices can be constructed for all elementary processes depicted in Fig. 24, 
and furthermore, if, for example, S is the split matrix, then S-t is the corresponding collapse 
matrix, etc. Second, instead of considering the individual (local) processes, we can consider 
the state vector of the entire graph T which is just a column vector of all transverse measures 
which we denote as fi. The evolution of the entire graph is determined then by some transition 
matrix T so that 

,?L’ = Tfi. (4.12) 
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Third, this equation is still unphysical. To make it physical, we have to ascribe certain 
statistical weights to each of the diagrams depicted in Fig. 24. The weights could be chosen 
either on the basis of statistical mechanics arguments (e.g. in the case of liquid crystals) or 
on the basis of quantum mechanical arguments (e.g. in the case of gravity). For instance, in 
the case of liquid crystals one can think of energy of the defect formation and destruction 
(for more details, please, see the next section and Sections 4 and 6 of Part II) as well as 
about the average energy (per defect) as a function of u (defined by Eq. (2.5)). Irrespective 
of the specific form of the weights, it is clear, that the time evolution of the graph T can be 
described in terms of the master equation (as it is usually done in statistical mechanics) 

api -= 
at c (WijPj - WjiWi). 

i#j 

(4.13) 

The matrix Wij is not symmetric unfortunately. This can be seen already from the Eq. (4.11). 
In the case of 2+ 1 gravity the above equation could, in principle, provide an alternative to the 
Wheeler-Dewitt equation [50]. Eq. (4.13) may have time -independent solution which (in 
terms of discrete maps, e.g. see Section 3), by analogy with Eq. (4.9, we may call reducible. 
It may as well have a periodic (in time) solution which we may (or may not) associate with 
the previously defined periodic (in space) case. Finally, it may not have any stationary or 
periodic solutions. This then will be indicative of the pseudo-Anosov type of evolution. 
The actual analysis of Eq. (4.13) would require a large scale numerical work, and evidently, 
some drastic approximations will be required. Therefore, for the time being, we would like 
to explore yet another possibility. Before doing so, several remarks should be made. 

Remark 4.8. Since in the case of train tracks there are no dead ends, this concept should 
be applied to open surfaces, e.g. to the open disc D2, with some caution, e.g. see [5 I]. 

Remark 4.9. Since the su$ace of nonnegative Euler characteristic contains no train tracks 
[20,46,47] some care should be taken to by-pass this difficulty. This is discussed to some 
extent in the Appendix A (see also [34,5 11). 

Remark 4.10. Without use of the probabilities leading to the master Eq. (4.13) different 
outcomes of iteration had been studied already [46,47,51,52]. Clearly, the process is re- 
ducible, periodic or pseudo-Anosov depending upon what sequence of moves, Fig. 24, had 
been used. For example, if only direct processes are being considered, such as the right (R) 
and the left (L) splits and the shift (S}, then the matrix sequence could be associated with 
some words in the alphabet made up of three letters [52] so that, in general, Eq. (4.13) 
describes a random walk on the mapping class group M(R) as could be realized upon 
reading of Ref [23]. 

Incidentally, the three letters alphabet is also being used for the meanders [35]. Hence, we 
would like now to study how one can use the meanders in resolving the types of dynamical 
behaviour. This is accomplished to some extent in the next section while in the Appendix A 
we provide some evidence that the meandritic labyrinths are indeed associated with the 
pseudo-Anosov homeomorphisms. 
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5. Phase transitions in the system of meandritic labyrinths 

Phase transitions in the system of meanders was recently considered in [36] in connec- 
tion with the problem of folding of polymers. At the same time, the arguments used in [36] 
could be traced back to the arguments made by Peierls in connection with phase transintion 
in two-dimensional Ising model [53]. To facilitate reader’s understanding of the develop- 
ment which follows, we would like to provide here a summary of the arguments made by 
Peierls. 

In the case of planar Ising model one is expecting to have droplets of spins of the “wrong” 
sign embedded among the “bulk” spins which have the “correct” sign (e.g. “+” for the correct 
and “-” for the wrong). The interface between the correct and the wrong spins determines 
the interfacial energy EL of the droplet so that for the droplet of perimeter L the energy is 
given by EL = L J with J being known, in principle, constant. The partition function 21 
for the Ising model can now be written as follows: 

Z,=2FG L exp{-BJL}, B-t = ksT, (5.1) 
L=O 

where ks T is the usual temperature factor. Since the Ising model is defined on the lattice, 
L is necessarily discrete and GL is the combinatorial entropic factor which determines the 
number of ways the droplets of the total perimeter length L can be arranged on the lattice. 

The difficulty in calculating ZI lies in determining the factor GL correctly. If, follow- 
ing Peierls, we make a drastic approximation: GL 2: 4L (since for the square lattice the 
coordination number is 4), then ZI can be calculated at once with the result 

ZI 2: (1 - 49-1, (5.2) 

where h = exp{-/I J}. The above expression makes sense only for h < 0.25 so that 0.25 
determines the critical temperature of the Ising model through equation: 4h* = 1. This 

result is interesting to compare against the exact result [54]: h* = dz CC 0.64 (for 
J = 1). Obviously, the value 0.25 appears to be too low even if compared with the Bethe 
approximation [55] which yields 3 (h*)2 = 1. This was noticed already by Peierls [53]. 
Nevertheless, the above crude estimate can be systematically improved and the Peierls 
arguments are the most powerful tool in general study of phase transitions in discrete spin 
systems as is well known [55]. The exact result, (h*)2 = 1/2 - 1, is valid only for the 
square lattice. In the case of triangular lattice the exact result is different: (L*)2 = (fi)-l, 
while for the hexagonal lattice, it is different again: (L*)2 = (2 + &)-I, e.g. see [54]. 
Hence, the critical temperature is actually a function of two parameters: J and z, where z 
is the coordination number of the lattice. Something similar happens in our (meandritic) 
case too. 

In the case of Ising model we can effectively define the notion of an order parameter. 
This is less obvious in the case which we are going to consider. What is important for 
us, however, is the fact that the partition function ZI diverges. We shall, by analogy with 
the Ising model, associate such divergence with the phase transition, in our case from the 
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Fig. 25. Construction of a typical meander, 

meandritic (pseudo-Anosov, according to Refs. [23,34] and Appendix A) to the periodic 
and/or reduced phases (since these are the only existing possibilities). 

Using the results of Section 2, Eq. (2.5) and Section 4 of Part II, Eq. (4.49), the total 
surface energy of n defects can be estimated as 

E, 2 :ny’ln 1 
0 

=nJ *, 
V 

(5.3) 

where the charge q is equal to the index of the singularity and k is some known constant 
(defined in Section 4, Part II) related to the surface tension. In arriving at Eq. (5.3) we had 
assumed that only Y’s and thorns are present (so that the magnitude of charges are all the 
same). To estimate the combinatorial factor (analogous to GL in Eq. (5.1)) the following 
arguments are helpful. 

According to [37], any meander can be built by superposition of two arc configurations 
of the same order: one is considered to be the top while another is the bottom as depicted 
in Fig. 25. Since both the top and the bottom are configurations of the same order, then 
by concentrating our attention, say, on the top configuration, we can obtain a projective 
meander (e.g. see Section 3) by identifying the beginning and the end of the horizontal 
straight line. In this case we already know that the number of possible configurations is C,. 
Evidently, we can do the same for the bottom arc system thus obtaining another C, . If we 
try all possible permutations, then, a priory, there is no guarantee that if the top and the 
bottom are connected together we shall obtain just one connected meander. More likely, we 
shall obtain C,” meanders some of them connected and some not. More exactly, let M(x) 
be the meander generating function, i.e. 

M(x) =EM,,x”, (5.4) 
n=O 

where M,, was defined in Section 3. We have the following theorem. 

Theorem 5.1. C, 5 M, 5 Ci. 

Proof. The upper bound was just established. The lower bound can be established if we 
associate the system of meanders with the three letter alphabet (as was briefly mentioned 
in Section 4). For more details, please, consult Ref. [35]. 0 
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Among all of Cz meanders of order n not all are topologically different. Let N, denote the 
number of topologically distinct configurations of meanders which altogether pass through 
2n points (which actually may belong to different lines), then the generating function for 
these numbers could be defined as 

N(x) =&,x”. (5.5) 
n=O 

If we disrespect the topological differences, then the generating function for the system of 
meanders can be written as 

B(x) = c C,2x”. (5.6) 
n=O 

Theorem 5.2. Functions B(x) and N(x) are connected with each other through the jiinc- 
tional equation 

B(x) = N(xB2(x)) (5.7) 

Proof. Please, consult [35]. 0 

Corollary 5.3. The meandritic numbers Mik’ introduced in Section 3 are generated via the 
following generatingfunction [36,37]: 

m,(g) = 2 Mik)gk 
k=O 

(5.8) 

provided that m, (g = 1) = C,‘. 

Based on the results just described, we are ready now to write down the partition function 
for the system of meandritic labyrinths. It is given by 

z,(x) = 7; F Mik)gkxn, x = exp(-pj}, (5.9) 
n=O k=O 

where j is defined by Eq. (5.3). This equation, in principle, is exact but, it requires knowlege 
of g. Evidently, g is the fugacity which determines the average number of meanders in the 
cluster (k) which is given by 

(k) = g$ In Z,(x). (5.10) 

This quantity is hard to estimate (see, however, some attempts in this direction below). 
Even if we would succeed, still, we would need to invert the infinite power series in order 
to write the fugacity g in terms of (k). Therefore, we would like to make an approximation 



A.L. Kholodenko/Journal of Geometry and Physics 33 (2000) 23-B 53 

based on the exact result coming from Eq. (5.8) for g = 1. Thus, we obtain the following 
approximation for the partition function of the system of meanders: 

Z(x) = E c,2xn, x = exp{-/?j}. (5.11) 
n=O 

Remarkably enough, this partition function admits the exact resummation [35] with the 
result (t2 = x): 

(5.12) 

At the same time, one can study the convergence of Z(x) based on known asymptotic value 
for C, : 

C, 2: cons’&, II + oo. 

From here, we obtain, 

C,2+, - - 16, 
C,2 

(5.13) 

(5.14) 

and therefore, 0 < x 5 1 / 16. Substitution of x * = 16 into Eq. (5.12) produces finite result: 

(5.15) 

For x > l/16 the partition function diverges, of course. 
Clearly, the condition 16x* = 1 determines the critical temperature for the fixed value 

of v or determines the critical “density” u* for a fixed temperature and the value of surface 
tension k in view of Eq. (5.3). 

The analysis presented above is still incomplete since one can calculate now N(x) in 
view of Eq. (5.7). Following [35], let us multiply both sides of Eq. (5.7) by t (t2 = x). We 
obtain, 

O(t) = t@) = tN(cr+t)>. (5.16) 

Let, furthermore, I. = Q(t) so that t = 0-l (A.). Then, we obtain, 

N(k2) = L. 
P’(h) 

Since using closed form result, Eq. (5.12), @(t) = tZ(t2) can be calculated, at least in 
principle, then N(h2) can be calculated using Eq. (5.17) as well. The radius of convergence 
for N(x) is equal to ((4 - rr) /x)~. Obtained results are in formal qualitative accord with that 
known in physical literature on liquid crystals [ 141. But now we know that the disordered 
(liquid-like) phase is actually pseudo-Anosov while the ordered (hexatic) is periodic and the 
reducible is solid-like. The phase transition mechanism, however, has absolutely nothing 

(5.17) 
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to do with the Kosterlitz-Thouless type of transition which was discussed in Section 2. 
Additional details related to this subject are provided in Section 4, Part II. 

Note added in proof. When this paper was completed we had found paper by Ishikawa 
and Lawrentovich [Europhys. Lett. 41 (1998) 171-1761 in which the Whitehead moves 
depicted in our Fig. 4 had been detected experimentally. In addition, the paper by Penner 
[Adv. Math. 101 (1993) 31-491 had also came to our attention. In this paper the train- 
tracks are being used to describe folding of RNA. Since in [36] the folding of proteins was 
considered with help of the meanders, the above reference provides additional support to 
the results presented in Sections 3-5 relating meanders to train tracks. Some details relevant 
to this relationship could be also found in Section 7.5 of Part Il. 

Appendix A 

In this appendix we would like to provide some arguments in favor of the statement 
made in Section 4 that the meandritic labyrinths are associated with the pseudo-Anosov 
homeomorphisms. 

To this purpose let us consider the simplest labyrinth which is made out of two copies of the 
disc D2 both of which containing just two thorns (to be in accord with P-H theorem). When 
glued properly, these two discs will form a sphere S2 with foliation forming a labyrinth (e.g. 
see [34], p. 29). We need now to explain why such foliation could be of pseudo-Anosov type. 

Consider an auxiliary problem about the foliations on the torus [ 17,18,42]. If we regard 
the torus T2 as a quotient of R2 by the integer lattice Z2, then the homeomorphisms h, 
of T2 are generated by the group G&(Z) since any element a of G&(Z) maps Z2 into 
itself thus inducing the continuous map h, : T2 + T2. The homeomorphism is orientation 
preserving if det(a) = 1 (VU E GLz(Z)) and, in this case, GLz(Z) becomes SL2(Z) which 
is represented by 2 x 2 matrix given by 

E SLz(Z) ifad-cb= 1. (A.11 

The eigenvalues of the above matrix are obtained, as usual, as the roots of the characteristic 

polynomial 

t2 - (a + d)t + (ad - cb) = 0 

or, in view of (A. l), 

t2 - (a -+- d)t + 1 = 0. (A.3 

There are three possibilities in general: 
(1) the roots of (A.2) are complex (when a + d = 0, 1 or -1); 
(2) both roots of (A.2) are equal to fl (when a + d = 2); 
(3) the roots of (A.2) are distinct reals (when la + dl > 2). 
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By analogy with the circle maps considered in Section 3, it can be shown [l&42], that 
the first possibility produces periodic maps of T2, the second produces reducible maps of 
T2 (that leave a simple Jordan curve fixed (possibly with reversed orientation))while the 
third possibility is responsible for the Anosov (not pseudo-Anosov) type of flow [ 17,181 
on T2 which was defined in Section 4. Consider now our S2 made up of two copies of 
D2, each containing two thorns. According to the results of Part II thorns are singularities 
in the complex z-plane (or on S2) associated with punctures. As it is usually done in the 
complex analysis, we can make branch cuts (as depicted in Fig. 26) in order to construct 
the two sheeted Riemann surface since the singularities are of the type (&)- ’ . In Fig. 26 
these two sheets are depicted as onion-like sphere with two layers. If the outer sphere is 

Fig. 26. Two sheeted covering of S2 before glueing. 

Fig. 27. Identification of cuts between the inner and the outer spheres produces torus T*. 
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peeled off and placed opposite to the inner sphere, as depicted in Fig. 27, then, by obvious 
identification of edges, the surface which is homeomorphic to T2 is formed. Hence, T2 

is a two-fold ramified branched covering of S2. The points of ramification are the above 
thorn-like singularities. In general, one can prove the following 

Theorem A.1. Every closed orientable su$ace (ofjinite genus) is two-fold ramiJied branched 
cover of S2. 

Proof. Please, consult [57,58]. 0 

If for T2 we have the case of the Anosov flow, then it is being transferred onto S2 in 
the form of pseudo-Anosov flow (because of 4 singularities placed on S’). Details of con- 
struction of pseudo-Anosov homeomorphisms fot this case are given in [59] and are mainly 
based on the earlier work by Katok [60]. For more than four defects in view of Theorems 
A. 1 and 4.4 of the main text, it is also possible, in principle, to establish connection between 
the labyrinths [34] and pseudo-Anosov homeomorphisms. Please, consult Expose’1 1 and 
Expose’12 of Ref. [23] and Section 4 of Ref. [45] for additional details. For more information 
on branched coverings, please, consult Ref. [61]. 
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